

The KA2206B is a monolithic intergrated circuit consisting of a 2-channel power amplifier. It is suitable for stereo and bridge amplifier application of radio cassette tape recorders.

FEATURES

- High output power
 Stero: P_O = 2.3W(Typ) at V_{CC} = 9V, R_L = 4Ω.
 Bridge: P_O = 4.7W (Typ) at V_{CC} = 9V, R_L = 8Ω.
- Low switching distortion at high frequency.
- Small shock noise at the time of power on/off due to a built-in muting circuit
- Good ripple rejection due to a built-in ripple filter.
- Good channel separation.
- Soft tone at the time of output saturation.
- Closed loop voltage gain fixed 45dB (Bridge: 51dB) but availability with external resistor added.
- Minimum number of external parts required.
- Easy to design radiator fin.

ORDERING INFORMATION

Device	Package	Operating Temperature		
KS2206B	12-DIPH-300	-20℃ ~+70℃		
KS22069BN	16-DIP-300A	-23 (

BLOCK DIAGRAM

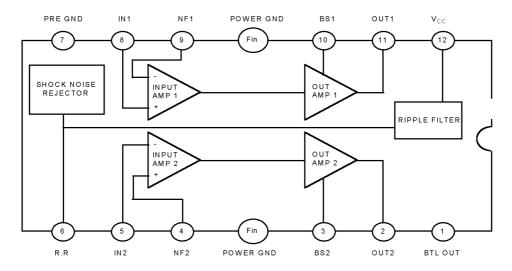


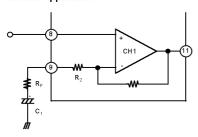
Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)

Characteristics	Symbol	Value	Unit	
Supply Voltage	Vcc	15	V	
Power Dissipation	P _D	4*	W	
Operating Temperature	T _{OPR}	-20 ~ +70	${\mathbb C}$	
Storage Temperature	T _{STG}	-40 ~ +150	$^{\circ}$	

^{*} Fin is soldering on the PCB

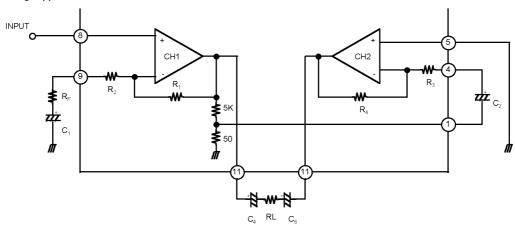
ELECTRICAL CHARACTERISTICS


(Ta = 25 $^{\circ}$ C, V_{CC} = 9V, f = 1Khz R_G = 600 Ω , unless otherwise specified)

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit
Operating Supply Voltage	Vcc				9	11	V
Quiescent Circuit Current	Icca	V _i = 0, Stereo			40	55	mA
Closed Loop Voltage Gain	GVC	Stereo	V _I = -45dBm	43	45	47	dB
		Bridge]	49	51	53	dB
Channel Balance	СВ	Stereo		-1	0	+1	dB
		Stereo	$R_L=4\Omega$, THD = 10%,	1.7	2.3		w
Ouptut Power	Po		$R_L=8\Omega$, THD = 10%,		1.3		w
		Bridge	$R_L=8\Omega$, THD = 10%,		4.7		w
Total Harmonic Distortion	THD	Stereo	R_0 =250mW, R_L = 4Ω		0.3	1.5	%
		Bridge			0.5		%
Input Resistance	Rı			21	30		ΚΩ
Ripple Rejection Ratio	RR	Stereo,R _G =0Ω, V _r =150mW		40	46		dB
		f=100Hz					
Ouput Noise Voltage	V _{NO}	Stereo, R_G =0 Ω			0.3	1.0	mW
		Stereo,R _G =10KΩ			0.5	2.0	mV
Cross Talk	СТ	Stereo,R _G =10KΩ, V _O =0dBm		40	55		dB

APPLICATION INFORMATION

1.Stereo application


i) Fixed voltage gain (Pin 9 connected to GND directly)

$$G_V = 20 \log \frac{R_1}{R_2} (dB)$$

ii) Variable voltage gain (Rf and C₁ connected with pin 9)

$$G_V = 20 \log \frac{R_1}{R_2 + R_F}$$
 (dB)

2. Bridge application

i) Fixed voltage gain (Pin 9 connected to GND directly)

$$G_V = 20 \log \frac{R_1}{R_2} + 6(dB)$$

ii) Variable voltage gain R_{F} and C_{1} connected with pin 9)

$$G_V = 20 \log \frac{R_1}{R_2 + R_F} + 6(dB)$$

APPLICATION CIRCUIT

1. Stereo Amplifier

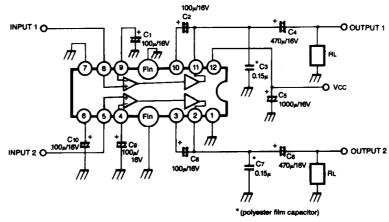


Fig. 2

2. Bridge Amplifier

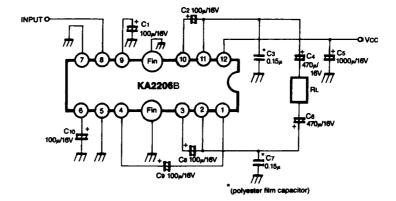
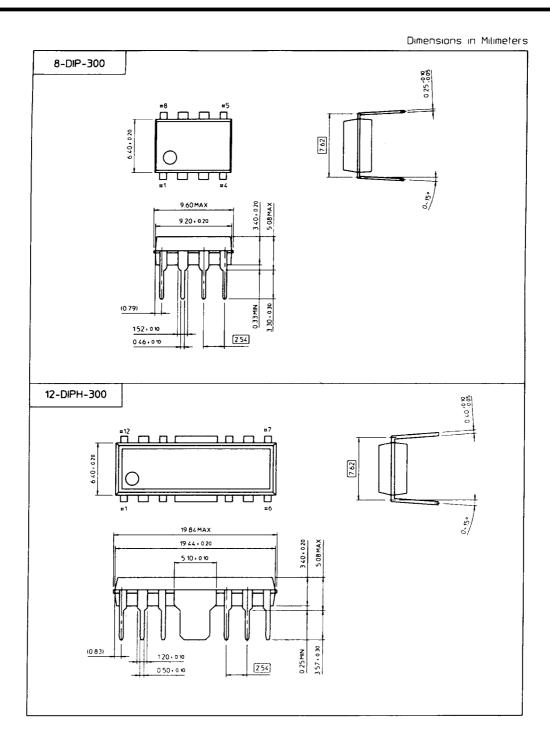



Fig. 3

